

1. Recent mobile phones are
increasingly using exchangeable
multi-media cards, but a lot of
user related data is still stored

in hard-soldered solid state
memories.

 2. Current mobile phones

store non-volatile data in Flash
memories packaged in so called

micro ball grid arrays, which
means that all physical

connections are on the bottom
side of the chip, not accessible

without first removing the
entire chip from the printed

circuit board.

 3. A device programmer
physically connects to a device
and is used by the industry to

program devices during
manufacturing.

147

Introduction

Preparing evidentiary images of mobile device media is different than
making a forensically sound copy of a hard drive. Mobile device media
are generally not meant to be exchangeable1, but instead literally
glued to the device’s printed circuit boards2. There is no general
open interface for directly accessing mobile device media other than
physical removal of the chips and reading them with so called device
programmers3. These kinds of investigations can only be done by
technical engineers in laboratory environments and are therefore
only carried out in exceptional cases.
Because mobile devices might contain a lot of potential evidence,
other investigation techniques are used to extract data from these
devices (van der Knijff, 2002). The most basic investigation method
is to use the normal user interface to manually extract as much user
related information as possible. For mobile phone investigations this
method can partly be standardized using a phone’s menu structure as

TULP2G - An open source forensic
software framework for acquiring and
decoding data stored in electronic devices
Jeroen van den Bos, Ronald van der Knijff

ABSTRACT. 	 TULP2G is a forensic software framework for
acquiring and decoding data stored in electronic devices. The
framework consists of a layered architecture with communication,
protocol, conversion, and export plug-ins to acquire, decode,
and report evidence in customizable layouts. All acquired data is
stored in an XML formatted evidence file along with information
for auditing purposes. XML files can also be used to customize
the framework with different user interface languages. A profile
mechanism is built in to save and load framework configuration
settings for common investigations. Conversion and export
plug-ins can also be used to decode data acquired with other
data acquisition methods. TULP2G is implemented in C#
using .NET1.1 and released under a BSD license.
All software, including source code is available at http://tulp2g.
sourceforge.net/. Currently available plug-ins are mainly targeted
towards GSM phone examinations, but the applied open source
strategy tries to stimulate other parties in developing more
examination functionality.

KEYWORDS: Forensic informatics, Forensic software, Legal investigation
technique, Mobile electronic device, Open source

TULP2Gvan den Bos - van der Knijff

*

FORMAMENTE - Anno I / n. 1/2 - 2006 Numero 1 - 2/2006148

guideline. This works for the older types of mobile phones, but gets
cumbersome with modern devices containing thousands of items in
a lot of different formats. For this reason the NFI - Netherlands
Forensic Institute - developed some tools at the end of the last
century to help investigators with their manual investigations,
Cards4Labs for reading SIM chip cards and TULP for reading data
from mobile phones.
There were a number of reasons to replace these tools with a general
framework for the examination of electronic devices.

l	Existing tools are based on ASCII text output format. The growing
	 usage of Unicode4 and the emerging popularity of multi-media data
	 in mobile communication demand a new storage and output
	 format.

l	Forensic embedded systems specialists want to concentrate on
	 data extraction and data decoding and not on integrating different
	 methods into a user friendly software product. Most tools stay
	 in an “only for laboratory use” stage and cannot be used by novice
	 users. A framework can relieve forensic specialists from complex
	 software development issues.

l	Embedded specialists at the NFI are busy with complex laboratory
	 examinations and do not have time to implement all requested
	 methods. With a framework more people are able to add
	 solutions.

This paper introduces TULP2G5, a forensic software framework for
acquiring and decoding data stored in electronic devices. Section 2
describes the framework architecture and the main functionality it
offers. Section 3 illustrates typical framework usage with a tutorial on
how to read pictures from a particular type of mobile phone. Advanced
usage of TULP2G data decoding functionality is demonstrated in
Section 4. Section 5 enumerates all currently available examination
tools for the TULP2G framework and describes the desired update
and support mechanism.

TULP2G software framework

Purpose

TULP2G is a forensic software framework to assist forensic
investigators with their examinations of electronic devices. It is not
a “push one button” tool automating the complete forensic analysis
process. It assumes trained examiners who know how to investigate
a device, but are in need of some assistance to speed up the forensic
investigation process and to minimize human errors.

4. A set of standards aimed
to provide a universal way
of encoding characters of
any language, regardless of
the computer system, or
platform, being used.

5. The name TULP2G refers
to the former TULP
program. TULP is Dutch for
tulip and used as an
acronym for Telefoon
UiTlees Programma, which
means “program to read
phones”.

 Numero 3 - 4/2006FORMAMENTE - Anno I

Figure 1.
TULP2G Framework Architecture

149

The framework itself does not contain specific functionality for
data extraction, decoding, or reporting. It only defines a general
examination workflow for investigators and offers an abstract design
to developers of so called plug-ins. These plug-ins contain the actual
investigation methods. From a user’s perspective the advantage of
using a framework concept is the “learn once apply everywhere”
principle. A drawback of this general purpose concept is the initial
effort needed to get used to the workflow. The most important
reason for introducing a framework concept is to make it easy for
software developers to add specific device functionality without
troubling them with GUI - Graphical User Interface - aspects and
repeating common programming tasks. By creating this we hope to
stimulate developers and increase the number of automated forensic
extraction methods for electronic devices.

Framework architecture and plug-in concept

Figure 1 depicts the general framework architecture

Each investigation starts with an exhibit containing data and ends
with a report containing information originating from the exhibit
data and/or related to the investigation process. The investigation
process is modeled with four different plug-in categories: two for
data acquisition and two for data conversion and export. A fifth Tool
plug-in category has been defined for case-related tasks not directly
linked to an exhibit or tasks which need a dedicated user interface.
Investigations can be grouped into Cases. All data related to a case is
stored in one XML formatted file (see section “Evidence file format”
for details).

TULP2Gvan den Bos - van der Knijff

FORMAMENTE - Anno I Numero 3 - 4/2006

Communication plug-ins

These plug-ins handle the lowest level of communication with
devices: setting up and closing connections and sending and receiving
raw data. Because of this they directly interface with the external
device through a driver or other low-level piece of software. This
means the lowest level from the TULP2G Framework perspective.
It does not necessarily mean the lowest possible level seen from the
computer’s operating system.
Examples of communication plug-ins are the serial communication
plug-in for accessing devices via RS232, Infrared or Bluetooth, and the
PC/SC communication plug-in for chip card access via the standardized
PC/SC interface (PC/SC Workgroup). Communication plug-ins can
call functions from the framework API (Application Programming
Interface: a set of methods for building software applications) for
logging and user interface purposes. Because communication plug-ins
are specific to a certain type of communication and not to a device,
they are not used on their own to read information from a device.
Another plug-in that uses the services of a communication plug-in is
required to supply the actual data that needs to be exchanged with
the device to retrieve useful information from it.

Protocol plug-ins

Protocol plug-ins are the counterparts of communication plug-ins.
They do not have the ability to actually connect to a device, but
instead they implement a protocol and use a communication plug-in6

to actually send and receive information from a device, according to
the protocol that they implement. Examples of protocol plug-ins are
the AT_ETSI protocol plug-in for extracting data from mobile phones
and the SIM protocol plug-in (Digital cellular telecommunications
system) for extracting data from SIM chip cards. Protocol plug-ins
can call functions from the framework API for logging, user interface,
and storing data from exhibits purposes.

Conversion plug-ins

A conversion plug-in receives data stored by the framework,
originating from exhibits, and is able to convert specific data types.
Conversion plug-ins can be chained in order to support sequential
decoding (onion peeling). This mechanism is supported to maximize
code re-use and avoid complex software maintenance procedures.
Examples of conversion plug-ins are the SIM conversion plug-in for
converting low level SIM data into report-ready XML data (except
for low level SMS TPDUs7, they are only “peeled” out of their “SIM
skin”) and the SMS conversion plug-in for converting SMS PDUs not

150

6. One protocol plug-in
might be able to use
different communication
plug-ins for connecting to
an exhibit. For this to work
the developers of the
communication plug-ins
need to use the same data
format in the implementation
of the framework interface
between the communication
and protocol plug-ins.

7. Short Message Service
Transfer Protocol Data
Unit: a message of a given
protocol comprising SMS
payload and protocol-specific
control information.

FORMAMENTE - Anno I Numero 3 - 4/2006

TULP2Gvan den Bos - van der Knijff

only originating from SIM cards, but from mobile phones. Conversion
plug-ins can call functions from the framework API for logging and
user interface purposes and are controlled through a selected export
plug-in.

Export plug-ins

Export plug-ins send all data stored by the framework, originating
from exhibits, and selected by the user, through the activated
conversion plug-ins. If data is converted by a particular conversion
plug-in, the export plug-in replaces the original data item with the
converted one. Once all data conversions have taken place, the
export plug-in converts the resulting data to a plug-in specific output
format, such as XML, HTML (Hyper Text Markup Language, the
authoring language used to create documents on the World Wide
Web), PDF (Portable Document Format, a file format developed
by Adobe Systems), or DOC (File format used by the Microsoft
Word software). Most Export plug-ins will be using a template-
based conversion method to allow for small changes to be made to
the output format without having to recompile or rewrite an entire
export plug-in. An example of an export plug-in is the XML export
plug-in for generating XML and/or HTML using XSL stylesheets
(Extensible Stylesheet Language, a specification for separating style
from content when creating HTML or XML pages). Conversion
plug-ins can call functions from the framework API for logging and
user interface purposes (e.g. specifying a template file or an output
folder for extracted multimedia data).

Tool plug-ins

The framework’s tool functionality makes it possible to create
additional plug-ins to perform investigation-related tasks using
TULP2G’s rich plug-in interface. Tool plug-ins are basically
free-form; there is no strict interface they should adhere to besides
the mechanism used by TULP2G to load plug-ins. This allows tool
plug-ins to perform all kinds of different tasks. An example of a
tool plug-in is the IMEI decoder plug-in for getting brand and type
information from mobile phones (International Mobile Equipment
Identity, a unique number given to every single mobile phone,
typically found behind the battery).

Evidence file format

TULP2G heavily uses XML for data storage and retrieval. XML is not
only used for saving and loading investigation data, but for storing
output, configuration, and language data, as well as for internal data

151TULP2Gvan den Bos - van der Knijff

152

Figure 2.
TULP2G XML Evidence File Format

8. Hash values are added
to ensure data integrity of
evidence files.

9. “+” means: string
concatenation, timestamps
are first converted to UTC
(Coordinated Universal Time).

structures during conversion and export. Figure 2 outlines the format
used by TULP2G for storing case related data.

Each TULP2G evidence file has only one Case element with three
possible child types:

l	Notes: at most one element for storing case related notes.

l	 Item: zero or more elements for storing logging data not belonging
	 to an investigation (e.g. related to export and conversion actions).

l	Investigation: top level element for data belonging to a particular
	 investigation. Investigation elements have two possible child types:
	 at most one Notes element for storing investigation related notes,
	 and zero or more Item elements for storing data belonging to the
	 investigation.

DateCreated and DateModified are timestamps in FILETIME format
equal to the local time of the computer running TULP2G. The
FILETIME data structure is a 64-bit value representing the number of
100-nanosecond intervals since January 1, 1601.

MD5 and SHA1 are hash values8 calculated in the following way9:

FORMAMENTE - Anno I Numero 3 - 4/2006

TULP2Gvan den Bos - van der Knijff

10. Base64 is an encoding
for binary data using 64

encoding characters
(A-Z, a-z, 0-9, +, /).

DataType is used by the conversion plug-ins to decide if conversion
of specific item data is possible. DataTypes are defined by plug-in
developers which need to assure that the same DataType is not used
for different data formats. Example DataTypes are ETSI_11.11_FILE
used by the SIM protocol plug-in and ETSIAT used by the AT_ETSI
protocol plug-in.

StorageType is String for string data and Binary for base6410 encoded
binary data items.

ItemType is Error for error logging data, Plugin-Info for plug-in related
logging data, Receive for data received from exhibits, and Send for
data sent to exhibits.

ItemTypes with value Error have two additional attributes:

l	ErrorClass with possible values: Communication, Forensic, Reporting,
	 System, or Unknown

l	ErrorSeverity with possible values: Warning, NonFatal, Fatal,
	 or Unknown

Auditability (logging)

For forensic purposes all actions taken by the investigator related to
exhibits need to be stored for reviewing. The TULP2G framework
logs case and investigation related user actions to the evidence
file using the value PluginInfo of the ItemType attribute. For this
reason loaded evidence files might need to be saved even if no new
investigation is added. If no evidence file is open logging data is
stored in a global log file specified with the systemlogfile element in
the TULP2G framework configuration file config.xml (default value is
systemlog.xml). ItemTypes with value Error are also displayed in the
Details section on the TULP2G progress form (Fig. 3).

153TULP2Gvan den Bos - van der Knijff

154

Figure 3.
Logged Errors Shown on the
Progress Form

Plug-in developers are advised to create logging items with the
framework API at least for all communication with exhibits and
after each encountered error or abnormal event. Logged audit
items can be used by export and/or conversion plug-ins for
encapsulation into reports. If an extensive review is requested, a
dedicated conversion plug-in can be created which extracts all
low-level communication with an exhibit from the evidence file and
converts it into an audit report.
To illustrate logging, assume a SIM card investigation with TULP2G
using the SIM protocol plug-in and the PC/SC communication
plug-in. The SIM protocol plug-in uses the framework API to store
data from the SIM file system into an evidence file. The protocol
plug-in also logs possible SIM-errors and relevant user actions like
the PIN and PUK attempts. The PC/SC communication plug-in is
controlled by the SIM protocol plug-in, but independently logs items
to the evidence file like connection attempts, low level data transfer
with the SIM, and any anomalies on the connection level. This log
data is normally not used for reporting, but is stored in the evidence
file for audit purposes. After completing the investigation, a report
can be generated with the XML export plug-in and the SIM and
SMS conversion plug-ins. During the export the framework creates
a logging item describing the used export and conversion plug-ins.
The used export and conversion plug-ins use the framework API
to log possible errors to the evidence file and are also able to put
specific items into the report. For example, the SIM conversion

FORMAMENTE - Anno I Numero 3 - 4/2006

TULP2Gvan den Bos - van der Knijff

Figure 4.
Part of a SIM Report Generated

from Data Logged by the SIM
Protocol Plug-In

11. The framework expects
all compiled help files in
the path relative to the

TULP2G executable folder,
further specified with the
<onlinehelppath> element
in the global configuration

file. The framework also
adds a language extension
based on the value of the

<language> element in the
global configuration file.

plug-in writes a table to the report with all PIN and PUK actions
executed during the examination (Fig. 4).

User documentation

The framework supports modular context-sensitive help. Each
plug-in can have its own compiled help file (Microsoft HTML
Help), possibly in different language versions (see next section).
The used naming convention is:
TULP2G.<Plug-inType>.<PluginName>.<LanguageCode>.chm.
To link a specific help item in a compiled help file to a GUI element
the frameworks assumes the following bookmark naming convention:
<ControlTag><ControlCaption>, with:

<ControlTag> specifying the GUI control type with possible values
Text, Info, Combo, Button and Check.
<ControlCaption> equal to the caption text of the control with
all spaces replaced with underscores (“_”) and all other non-
alphanumeric characters removed.

Example: pressing the [F1] key from the Port combo-box in the
configuration form of the Serial plug-in will cause TULP2G to open
the file TULP2G.Communication.Serial.en-GB.chm and display the
item bookmarked with ComboPort11.
Documentation related to report items is preferably added to the
report in order to make a separation between people who do an
investigation and people who have to interpret the investigation
results. Current report templates embed this documentation in
such a way that the reader can choose a level of documentation to
display (each item is preceded by an explanation, only explanations
are shown or an explanation is shown when the mouse is dragged
over the item content).

155TULP2Gvan den Bos - van der Knijff

156

Language configuration

The TULP2G framework is designed to support multiple user
interface languages.
Language dependent items are tagged and can be adapted to a
specific language with external XML files. Adapting the TULP2G user
interface to another language is a six step process:

l	Install TULP2G onto an administrator’s machine and configure it
	 with the preferred plug-ins.

l	Quit TULP2G and open the config.xml file to change the <language>
	 element to the target language using the ISO-639 language code
	 and the ISO-3166 twoletter country code (for example nl-NL for
	 Dutch as it is spoken in The Netherlands). Change the <runmode>
	 element to localize.

l	Start the TULP2G framework. No user interface will be
	 visible, the framework only generates template XML files for
	 localization with names such as:
	 TULP2G.<Plug-inType>.<Plug-inName>.<LanguageCode>.xml
	 (for example TULP2G. Protocol.AT_SIEMENS.nl-NL.xml).
	 Edit these template files and translate all English text element
	 values into the target language.
	 Also translate the file GUI.<LanguageCode>.xml.

l	Change the <runmode> to GUI and the framework will use the
	 translated element values of the selected language. These translated
	 language files can now be distributed onto target machines.

l	Translate all report templates.

l	Translate all online compiled help files (see previous section) using
	 the same naming convention as in the localization files.

Besides user interface elements the framework supports translation
of other language dependent data (such as error messages and status
information). Plug-in developers will need to define label names when
using language dependent data and these labels need to be added to
the localization files manually. If needed, future framework versions
could automate this process in the same way as with the generation
of user interface translation templates.

Profiles

Configuring TULP2G for a specific investigation can be a time
consuming task. First, the right plug-ins need to be installed. Then each
data acquisition plug-in has to be configured before the investigation

FORMAMENTE - Anno I Numero 3 - 4/2006

TULP2Gvan den Bos - van der Knijff

12. Object Exchange
Protocol, a binary session

protocol optimized for ad-
hoc wireless links (IrDA).

can be executed. After the data acquisition process is finished,
but before a report can be generated, an export plug-in needs to
be configured with a suitable template. Also the right conversion
plug-ins must be selected, arranged, and possibly configured.
To speed up standard investigations the framework supports a profile
mechanism that can be used to save and load particular investigation
set-ups. After configuring and testing a complete investigation and
reporting flow, the current configuration can be saved to an XML file
with the Save Profile function. The next time a similar investigation
needs to be performed, the saved profile can be loaded with the
Load Profile function. This function first tries to configure installed
plug-ins as specified in the saved profile. If a specific plug-in version
is not installed, the framework looks for an installed plug-in with the
same name and most recent version number. Then the framework
asks the user for Case, Investigator, and Investigation names.
Following the user’s input the framework is configured as specified in
the loaded profile and is ready to execute the investigation followed
by generating an accompanying report.

Tutorial

To give an impression of typical framework usage, this section
presents a tutorial for a specific investigation using TULP2G. This
tutorial assumes the latest installed version of TULP2G (see section
“Availability and current version” for details). For this tutorial we
use a SonyEricsson mobile phone, model K700i and we want to
extract the pictures made with the built-in camera of the phone.
Besides the GSM radio interface and the user interface, a K700i
has three interfaces for data communication: cable, infrared and
Bluetooth. In this tutorial the infrared interface is used to connect
the phone to a personal computer with an external infrared adapter.
For extracting the pictures the OBEX12 protocol plug-in is used.
The OBEX protocol plug-in is designed to use the Socket
communication plug-in. A socket is one of the most fundamental
technologies of computer networking. Sockets allow applications
to communicate using standard mechanisms built into network
hardware and operating systems. After starting the TULP2G
framework check that the Socket and OBEX plug-ins are loaded via
the “List…” button on the “Tulp2g” tab. Otherwise load the files
TULP2G.Communication.Socket.dll and TULP2G.Protocol.OBEX.dll
from the TULP2G Plugins folder. Go to the “Case” tab, type a “Case
Name”, optionally some “Notes” and select the “Create” button.
This creates the top level Case element and an Investigation element
in the evidence file (see section “Evidence file format”).

157TULP2Gvan den Bos - van der Knijff

158

Figure 5.
The Case Tab Before Selecting
the “Create” Button

13. Switch the “Infrared
port” to “On” via the
phones “Connectivity”
menu. If enabled the PC
now displays an icon in the
taskbar indicating infrared
activity.

Now go to the “Investigation” tab, type an “Investigation name”,
and optionally some “Notes”. Select the “Socket communication”
communication plug-in from the “Communication plug-in”
combo-box, and select the “Configure…” button to the right.
Now place the phone with the infrared sensor in front of the PC’s
infrared transceiver and make sure infrared transfer is enabled in the
phone13. The “Socket Type” should be “IRDA” and after selecting
the test button the “Status” field should change from “Unknown”
to “OK” indicating the connection is working on this protocol level.
Select the “OK” button to keep these settings, select the “OBEX
phone protocol plug-in” and select the “Configure…” button to
the right. Change the ”OBEXFTP” value of the “Service” combo-
box to “OBEXOBJECTPUSH” and select the “Test” button. The
“Status” field should change from “Unknown” to “OK” indicating the
connection is working on this protocol level. Select the “OK” button;
both communication and protocol plug-ins are now configured.

FORMAMENTE - Anno I Numero 3 - 4/2006

TULP2Gvan den Bos - van der Knijff

Select the “Run” button to start the data acquisition. The “Progress”
form will appear showing the acquisition status. After the acquisition
has been completed14, error and warning messages can be displayed
by selecting the “Show details” button on the “Progress” form.
Select the “OK” button to complete the investigation. To store the
evidence file go to the “Case” tab, select “Save Case…” and choose
a file name and location with the file selection dialog. All evidence
data is now saved for later use.
To make a report of the acquired data, the XML export plug-in
needs to be installed along with the OBEX conversion plug-in. Go
to the “Report” tab, select the XML/HTML export plug-in and select
the “Configure…” button on the right. With the “Select stylesheet
file…” button select the stylesheet “ReportOBEX.xsl”, and select
the “OK” button. Now select the “Select…” button on the right
of the “Selected conversion plugin(s)” list-box and add the “OBEX
phone data conversion” plug-in to the list of “Use plugins”. With the
“Configure…” button a folder can be selected for all exported data
items. The report can now be generated by selection of the “Run”
button. The framework asks for a file name for the report and starts
the reporting process. After all conversions are finished the report
is loaded into the default installed browser with all pictures that are
normally accessible via the phone’s user interface. All multi-media
data (pictures, sounds, videos) are extracted to the selected export
folder. The report file only contains links to these files to enable

Figure 6.
The Investigation Tab After

Configuring of the Communication
and Protocol Plug-Ins

14. This might take a long
time (hours) if a lot of

multi-media data is present
in the phone. It is not

exactly clear why it takes
such a long time for a

relatively small amount
of data.

159TULP2Gvan den Bos - van der Knijff

“click to open” functionality on the computer where the framework
is running.

For auditing purposes, the case needs to be saved before closing
TULP2G or starting a new case to include the reporting process
in the evidence file. This example only concentrates on extracting
pictures from the exhibit. Other plug-ins might be able to get other
data from this phone15.

Advanced usage of conversion plug-ins

This section will show how conversion plug-ins can be used for
decoding data that is not acquired with protocol plug-ins, but
imported from other sources. To do this the target data needs to be
encapsulated into a valid evidence file. As an example, take the SMS
TPDUs (see section “Conversion plug-ins”) showed in Fig. 8.
These TPDUs might originate from a variety of sources, such as a
wire tap, a hard drive, or low level image reading of a mobile phone’s
memory chip.

160

Figure 7.
The “Report” Tab Just Before
Selecting the “Run” Button

15. For example the IRMC
protocol plug-in for data
from the phone book, text
messages and calendar data,
and the SIM protocol plug-in
to extract data from the
SIM chip card attached to
the phone.

 Numero 3 - 4/2006FORMAMENTE - Anno I

Figure 8.
Binary Data of Three SMS TPDUs

Figure 9.
TPDUs Encapsulated into a

Valid Evidence File

To get these TPDUs decoded by TULP2G they need to be encapsulated
into a valid evidence file with the right DataType and format (see
section “Evidence file format”) to let the SMS TPDU conversion
plug-in do the decoding. The compiled help file of the SMS TPDU
conversion plug-in describes the expected data format. Fig. 9 shows
an evidence file with the three TPDUs. Hash values are not specified
and timestamps are set to irrational values. To load this evidence file
the validatehashes element of the global configuration file needs to be
set to false. After saving this evidence file the framework calculates
hash values and adds these to the evidence file.

From this evidence file a report can be generated with the SMS
TPDU conversion plugin and the XML/HTML export plug-in, using
the ReportSIM.xsl stylesheet. The result is displayed in Fig. 10.

161TULP2Gvan den Bos - van der Knijff

162

Figure 10.
Resulting Report
of the Decoding Process,
A Multi-Part SMS Picture Message

Availability and current version

TULP2G has been implemented in C# using.NET 1.1. The software
is open source and released under a BSD license. The BSD license is
a very unrestrictive license, allowing various uses of the software, as
well as (modified) redistribution in both source and/or binary form.
Distribution under this license is an attempt by the NFI to stimulate
the development of forensic software tools. For distribution
and release management the open source software development
website SourceForge is used. TULP2G can be downloaded from
http://tulp2g.sourceforge.net/
The NFI maintains a binary distribution of TULP2G which can be
used for forensic investigations. To ascertain the integrity of this
distribution each module is protected with a private key only available
to the NFI. The.NET environment verifies each module before it is
loaded using the NFI’s public key. The 8-byte hash of the NFI’s public
key is equal to: 34 80 A3 62 4A C4 8F 93, and printed in all generated
reports.
The current, full distribution package of TULP2G on Sourceforge
contains the following plug-ins:

Communication

l	Serial Port for communication over serial channels (e.g. RS232,
	 Infrared, BlueTooth);

l	PCSC for communication via PC/SC compatible chip card readers;

l	Socket for socket communication.

Protocol

l	AT-ETSI for mobile equipment which implements the AT command
	 set for GSM Mobile Equipment;

 Numero 3 - 4/2006FORMAMENTE - Anno I

l	AT-SIEMENS for mobile equipment which implements AT
	 commands specific for Siemens phones;

l	AT-SAMSUNG for mobile equipment which implements AT
	 commands specific for Samsung phones;

l	SIM for GSM SIM cards;

l	OBEX for OBEX compatible mobile phones via OBEX push or FTP
	 service;

l	IRMC for IRMC compatible mobile phones.

Conversion

l	AT-ETSI for conversion of data extracted with the AT-ETSI
	 protocol plug-in;

l	AT-SIEMENS for conversion of data extracted with the AT-SIEMENS
	 protocolplug-in;

l	AT-SIEMENS for conversion of data extracted with the AT-SIEMENS
	 protocol plug-in;

l	SIM for conversion of data extracted with the SIM protocol plug-in;

l	SMS for conversion of SMS TPDUs;

l	OBEX for conversion of data extracted with the OBEX protocol
	 plug-in;

l	IRMC for conversion of data extracted with the IRMC protocol
	 plug-in;

l	HexDump for hex viewer like displaying.

Export

l	XML/HTML for saving case data in XML and/or HTML format.

Tools

l	IMEI for decoding serial numbers of mobile GSM equipment.

There is also a separate ZIP file available on Sourceforge with plug-ins
to prepare a writable SIM card for examining a mobile phone without
having the last inserted SIM and without changing important user
data data in the examined phone.

163TULP2Gvan den Bos - van der Knijff

Related work

In recent years a number of forensic tools have appeared specifically
targeted towards acquisition, analysis and reporting of data stored in
mobile devices. For Personal Digital Assistants (PDAs) (Ayers, Jansen,
2004) gives an overview of available software and an understanding
of their capabilities and limitations. A similar overview related to
mobile phones is published by NIST in Ayers, Jansen, 2005.

Conclusions and future work

This paper presented a forensic software framework for acquiring
and decoding data stored in electronic devices. The current version
of the framework along with the available plug-ins can already be used
to assist investigators with their manual investigation tasks. To widen
the usefulness, new functionality is needed to support more devices
and enlarge the completeness of the data extraction and decoding
process for supported devices. Publishing TULP2G as an open
source package is an attempt by the NFI to stimulate other parties
in developing TULP2G plug-ins. To make it easier for developers to
start with a plug-in, a dedicated developer paper will be published
together with some tutorial plug-ins. Additional work is required in
the area of testing and evaluation. The core framework functionality
needs extensive testing and auditing and for testing specific plug-in
setups a general test protocol needs to be defined.

References

Ayers Rick, Jansen Wayne (2004, April), PDA Forensic Tools: An overview and

Analysis. Electronic document retrieval. National Institute of Standards and

Technology (NIST), http://csrc.nist.gov/publications/nistir/nistir-7100-PDAForensics.pdf

Ayers Rick, Jansen Wayne, Cilleros Nicolas, Daniellou Ronan (2005, October),

Cell Phone Forensic Tools: An overview and Analysis. Electronic document retrieval.

National Institute of Standards and Technology (NIST)

http://csrc.nist.gov/publications/nistir/nistir-7250.pdf

Digital cellular telecommunications system (Phase 2) (GSM), AT command set for

GSM Mobile Equipment (ME) (GSM 07.07), http://www.etsi.org/

Digital cellular telecommunications system (Phase 2+) (GSM), Specification of the

Subscriber Identity Module - Mobile Equipment (SIM - ME) interface (GSM11.11)

http://www.etsi.org/

164

All URLs checked
December 2006.

 Numero 3 - 4/2006FORMAMENTE - Anno I

Extensible Markup Language (XML)

http://www.w3.org/XML/

ISO 639 2-letter language codes

http://www.w3.org/WAI/ER/IG/ert/iso639.htm

ISO 3166 country codes

http://www.iso.org/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Ronald van der Knijff (2002), Embedded Systems Analysis, in Handbook of

Computer Crime Investigations: Forensic Tools and Technology, Eoghan Casey

(ed.), Academic press, chapter 11

Microsoft HTML Help

http://msdn.microsoft.com/library/default.asp?url=/library/enus/htmlhelp/html/

vsconHH1Start.asp

PC/SC Workgroup

http://www.pcscworkgroup.com/

The Infrared Data Association (IrDA), Specifications for infrared wireless communication

http://www.irda.org/

*Article originally appeared in: “International Journal of Digital Evidence Fall
2005”, V. 4, Issue 2.
Reprinted with permission of the authors and the publisher.
http://www.utica.edu/academic/institutes/ecii/ijde/articles.cfm?current=1

Sintesi

Il TULP2G è un software in grado di raccogliere, decodificare i dati e le informazioni
contenute in un dispositivo elettronico mobile e di trasformarli in file di formati
accessibili. Il sistema, ideato nell’ambito delle ricerche dell’Istituto Legale Olandese, è
in grado, cioè, di tradurre i dati contenuti nei supporti elettronici mobili, in file.XLM: file
che possono facilmente essere gestiti da qualunque investigatore per la costituzione
delle prove di un reato, utilizzabili in un processo. I dati nei dispositivi mobili, infatti,
generalmente non sono intercambiabili, ma sono invece letteralmente incollati ai
circuiti del dispositivo: per leggerne il contenuto non esiste altro sistema che rimuovere
il chip e leggerlo con appositi dispositivi, chiamati “dispositivi programmatori”. Questo
significa che solo tecnici specializzati sono in grado di ricavarne dati utili.

165TULP2Gvan den Bos - van der Knijff

Per far fronte alle numerose richieste da parte degli investigatori e per rendere il sistema
fruibile anche ai non esperti, l’Istituto Legale Olandese (NFI) ha creato un software che
riesce a catturare la fonte dei dati e la converte in testo leggibile e acquisibile in via
informatica, superando così i sistemi tradizionali manuali.
Non è un sistema che si sostituisce alla competenza degli investigatori, ma è un software
che vuole rendere più veloci le investigazioni legali e minimizzare gli errori umani.
La procedura di acquisizione e di traduzione viene descritta analiticamente, esplicando i
vari passaggi di cui si compone, e fornendo un esempio dettagliato: utilizzando l’ultima
versione del software vengono estratte da un telefono cellulare SonyEricsson, modello
K700i, fotografie realizzate con la camera digitale incorporata.
La particolarità della pubblicazione del software come open source è inoltre un invito
per altri operatori a sviluppare il software, a testarlo e determinare così la definizione
di un protocollo unico e affidabile.

166 FORMAMENTE - Anno I Numero 3 - 4/2006

