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ABSTRACT. Sensors have been widely used for disease diagnosis, 
environmental quality monitoring, food quality control, industrial 
process analysis and control, and other related fields. As a key 
tool for sensor data analysis, machine learning is becoming a 
core part of novel sensor design. Dividing a complete machine 
learning process into three steps: data pre-treatment, feature 
extraction and dimension reduction, and system modelling, this 
paper provides a review of the methods that are widely used for 
each step. For each method, the principles and the key issues 
that affect modelling results are discussed. After reviewing the 
potential problems in machine learning processes, this paper 
gives a summary of current algorithms in this field and provides 
some feasible directions for future studies. 
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Introduction 
 
Sensors have been applied to a variety of fields such as environmental 
quality monitoring (Roncaglia et al., 2004), non-invasive disease 
diagnosis (Chen et al., 2005), food quality control (Marin et al., 
2007), and industrial process analysis (Yan, Zhao, 2009), because 
of the following advantages: (1) ability to function in a harsh 
environment, (2) ability to operate continuously and automatically, 
and (3) high accuracy and sensitivity. In general, developing a sensor 
depends on two major components: analytical instruments and data 
analysis techniques. Novel analytical instruments allow producing a 
great amount of information (data) and also permit the exploration 
of new fields. 
However, these generated sensor data may contain irrelevant 
information and moreover the principles of the new fields could be 
very complex and even totally unknown, so reliable sensor systems 
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figure 1. 
flowchart of a machine learning 
process for electric sensor systems.

are becoming increasingly reliant on sophisticated data processing 
techniques. 

 As a powerful tool for advanced data processing, machine learning 
has become a core technique for novel sensor development, 
aiming to discover the hidden rules that control complex systems. 
As shown in Figure 1, a complete machine learning process is 
composed of three steps: data pre-processing, feature extraction 
and dimension reduction, and system modelling. Data pre-
processing comprises noise filtering, data normalization, signal 
alignment, and other related data treatments. Sensor signals are 
usually composed of a large number of variables, so in the second 
step feature extracting methods are used to transfer sensor signals 
from their original high dimensional space to a low dimensional 
feature space or to select “representative” (pertinent) variables to 
characterize an entire system. Given a good feature expression, 
the last step of machine learning is to establish system models 
either for classification problems such as pollutant detection and 
disease diagnosis or quantitative estimation problems like chemical 
concentration prediction. 
Any of these three steps can play a key role in controlling machine 
learning effects. There have been some good review papers and 
books about pattern recognition techniques for either general 
industrial applications or specific fields like food science (Bishop, 
2006; Berrueta et al., 2007). This paper will provide a review of 
the algorithms that are currently used in each step, compare their 
individual properties, and discuss future perspectives of machine 
learning methods for sensor development, covering the applications 
to both classification and quantitative estimation. 



3Zhao et al. Machine Learning: a cruciaL tooL for sensor design

Data pre-processing 

Data pre-treatment is important and also the first step for 
establishing a machine learning model, as raw sensor signals usually 
(even unavoidably) have some problems that could be harmful for 
modelling effects. 

Noise removal 

Noise removal is a basic procedure for signal enhancement. Many 
sensor signals are composed of time series data, so a variety of 
digital signal processing and time series analysis techniques have 
been applied for signal enhancement. Different from Fourier analysis 
which only focuses on frequency domain, wavelet analysis examines 
data in both time and frequency domains. It has become a powerful 
noise filtering method, decomposing original signal into low and 
high frequency domains (Addison, 2002). The high frequency 
domain contains more noise information from the original data, so 
modifying the wavelet coefficients in the high frequency domain by 
setting up a threshold is a simple but effective method for sensor 
signal enhancement (Cappadona et al., 2008). Auto-regressive 
(AR) analysis is another noise filtering technique, generating AR 
coefficients to represent and reconstruct original signal. It has been 
successfully used for chromatographic signal enhancement (Krebs 
et al., 2005; Ubeyli, Guler, 2004). 

Baseline removal 

Baseline removal is another important pre-treatment for signal 
enhancement. A conventional baseline removal process for spectral 
or time series data consists of three major steps (Pearson, 1977): 
(1) to determine baseline key points in spectrum, (2) to build a 
baseline model for the whole spectrum using the detected baseline 
points, and (3) to correct the signal by subtracting the baseline from 
original signal. Recently, some new algorithms have been developed, 
such as an adaptive learning algorithm for electrocardiogram (ECG) 
baseline removal (Esposito, D’Andria, 2003) and a selective filter 
for ECG baseline correction (Shusterman et al., 2000). 

Signal alignment 

Signal shifting is a potential problem for data series. Chromatography/
spectral instrument based sensors are a typical place where this 
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figure 2. 
Principal component analysis of total 
ion chromatograms resulting from 
gc–Ms analysis of headspace above 
plasma samples from two donors 
(donor a: +, donor B: o). 
(a) before and (b) after alignment.

problem often occurs. It is no doubt that shifted signals can result 
in a failure of sensor analysis. In general, for chromatography data, 
time alignment begins with locating the peaks that correspond to the 
same chemicals in a selected template chromatography profile. Then, 
after getting these peaks aligned, a linear or nonlinear interpolation 
process is applied for chromatography profile registration. Spline 
functions are an efficient nonlinear interpolation method (Krebs, 
Tingley et al., 2006). Figure 2 shows a significant improvement 
on the separation of two groups of gas chromatography mass 
spectrometry (GC/MS) data before and after time alignment 
process (Krebs, Tingley et al., 2006), by employing a clustering tool 
called principal component analysis. The details of this tool will be 
discussed in the next section. As an extension of one-dimensional 
alignment, two dimensional alignment can be applied to the three 
dimensional spectral data, such as gas chromatography differential 
mobility spectrometry (GC/DMS) data (Krebs, Kang et al., 2006). 

Principal Component 1
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Outlier detection

To have a reliable and automated sensor system, data pre-treatment 
also needs to detect possible outliers that could influence modelling 
effects. Unlike noise, an outlier is an observation that disobeys the 
distribution of the rest of the data (Crowe, 1989). Outliers can 
also be called “questionable data”, “strange points”, or “doubtable 
observations”, and are often caused by confounding system 
mechanisms or instrument error (Mah, Tamhane, 1982). Outliers 
may cause damage to a modelling system to which they do not 
belong, so a broad range of techniques have been applied for outlier 
detection. Statistical analysis methods are widely used to detect 
outliers in linear systems, estimating the standardized residual of 
each observation in the regression model (Mah, Tamhane, 1982; 
Prescott, 1975). Self-organizing map (SOM) was introduced to 
detect outliers in nonlinear systems, based on the distance between 
data points (Munoz, Muruzabal, 1998). However, in some cases, 
distance is not a proper criterion for outlier verification, because 
some normal data may deviate more from the majority of the data 
than outliers, especially for highly nonlinear systems. A method 
integrating a linear outlier detection strategy with radial basis 
function neural networks (RBFNN) was proposed to detect outliers 
in complex nonlinear systems (Zhao, Chen, Hu, 2004). Outliers are 
not noise, so simply excluding outliers from analysis may be not 
beneficial to the discovery of the hidden mechanisms and rules. 

Data normalization 

Normalization usually is the final step for data pre-treatment. In 
terms of data characteristics, this step can be divided into local 
normalization and global normalization. A typical local normalization 
process is unit scaling, which is widely used for spectral data. 
The similarity of two spectral samples is represented by the dot 
product of their unit spectral vectors. Global normalization aims 
to make sensor variables comparable, preventing some variables 
with lower magnitudes from being overwhelmed by others with 
higher magnitudes. However, in some cases, global optimization can 
amplify the noise or the information of irrelevant sensor variables, 
which might be harmful for modelling. 
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Feature extraction and dimension reduction 

The development of novel instruments has produced sensors that 
generate data with extremely high dimensions, which provides 
an opportunity to carry out an extensive system investigation. 
However, analyzing these copious amounts of data depends on 
sophisticated techniques to extract pertinent features from original 
data. Generally, feature extraction and dimension reduction aim to 
create a map from a high dimensional space to a low dimensional 
space f : Rm →Rn (n << m). This step not only unloads heavy 
computational burdens from the subsequent system modelling step 
but also excludes irrelevant and noise signals from analysis. 

Traditional multivariate analysis methods 

Multivariate statistical analysis is a very efficient strategy for feature 
extraction. Principal component analysis (PCA) is the most widely 
used method for this purpose. PCA is a linear transformation that 
transforms original data to a new coordinate system where the 
greatest variance of the data lies on the first coordinate (called the 
first principal component), the second greatest variance on the second 
coordinate, and so forth. In other words, PCA is an eigenvector-
based multivariate analysis method, providing a map from an original 
data space to a new space with much lower dimensions (Wold et 
al., 1987). With the abilities to remove co-linearity in variables, 
condense information of original data, and enhance signal quality, 
PCA has been extensively applied for sensor signal analysis such as 
fungal growth detection in bakery products (Vinaixa et al, 2004), 
olive oil discrimination (Brezmes et al., 2005), and environmental 
quality monitoring (Scorsone et al., 2006). As extension of PCA, 
independent component analysis (ICA) is another effective feature 
extraction method, extracting statistically independent components 
from original data space (Comon, 1994; Krier et al., 2008). Different 
from PCA that solely de-correlates the data, ICA has obtained great 
applications to sensor design (Yadava, Chaudhary, 2006; Di Natale 
et al., 2002). 
Linear discrimination analysis (LDA) and partial least square regression 
(PLSR) are also widely used as statistical feature extraction methods 
for sensor development (Buratti et al., 2004; Vestergaard et al., 2006). 
Different from PCA, the extractions based on LDA and PLSR are 
embedded in a classification or regression process that requires both 
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independent data X and dependent data Y. The principles of these 
two methods will be discussed in the following “System modelling” 
section. 
Positive matrix factorization is another important feature extraction 
method, especially in the cases where the generated “loading” and 
“score” matrixes should only have positive values to ensure their 
physical meanings. A positive matrix factorization (PMF) method based 
on least square regression has been extensively applied to air quality 
analysis and control (Paatero, 1997; Zhao, Hopke, 2004; 2006), with 
potential applications to a variety of environmental sensor design. 

Digital signal processing based methods 

In many cases, sensor output signal is a time series, such as a 
chromatogram, or an image, such as mass spectrometry - mass 
spectrometry (MS/MS) data, so digital signal processing and time 
series analysis have become powerful feature extraction methods 
for sensor signals. 

Wavelet analysis 
In contrast to the traditional fast Fourier transformation, wavelet 
analysis is able to examine the signal simultaneously in both 
time and frequency domains, so it is an excellent tool to analyze 
non¬periodic, noisy, and intermittent signals and has spawned 
a number of wavelet-based methods for signal analysis and 
interrogation (Addison, 2002). Basically, wavelet transformation 
aims to represent an arbitrary function by superposing a group of 
wavelets which are generated from a mother wavelet Ψ through 
dilations and translations. A wavelet function generated at scale a 
and location b can be described as, 

                                   (1)
           

Proposed by Mallet for digital signal processing, wavelet analysis 
was substantially developed for various application fields after 
Daubechies constructed a set of wavelet orthonormal basis 
functions (Mallet, 1989; Daubechies, 1988). In a recent study of 
sensor selection for machine olfaction design (Phaisangittisagul, 
Nagle, 2008), discrete wavelet transformation not only significantly 
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reduced the number of sensor variables but also yielded an almost 
100% accuracy for the classification of two types of odour (coffee 
and soda). Wavelet transformation coupled with artificial neural 
networks was also successfully used for electronic tongue design 
(Moreno-Baron et al., 2006) and environmental variable monitoring 
(Ciarlini, Maniscalco, 2008). To ensure the feature extraction effect 
of wavelet analysis, a couple of things should be taken into account 
including wavelet type and decomposition level. The coefficients 
of an overly-deep decomposition level might not have enough 
signal information, while those of a low decomposition level may 
still contain much noise. Determining how many levels of wavelet 
coefficients are needed and whether the coefficients in both low 
and high frequency domains are useful is case-dependent. 

Auto-regressive modelling 
Auto-regressive (AR) analysis is an efficient feature extraction tool 
for time series data, widely used for speech analysis (Markovic et al., 
2002; Smidl, Quinn, 2005). As an all pole model (filter), a p-order 
AR model can be expressed as: 

 (2)
  

where x is time series data, ai (i=1, …,p) are AR coefficients, a0 is a 
constant, and εn is an error estimate. Briefly, using AR coefficients, 
we can represent the nth value xn with its previous p values:  
xn-1, xn-2, …, xn-p. The goal of an AR model is to estimate the AR 
coefficients that can fit the original data series as closely as possible 
through an optimization process. 
AR coefficients systematically characterize a changing trend in the 
data series, so in addition to the common effects of signal treatment, 
such as noise removal and dimension reduction, the AR model 
shows its significant advantage in dealing with mild signal shifts in the 
time series (such as chromatograph data). AR modelling can permit 
us to directly work on time shifted chromatograph data without 
using time alignment as a pre-processing step. This advantage has 
recently been proven in a GC/MS based sensor design for bacterial 
identification (Zhao, Morgan, Davis, 2008). 
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Feature subset selection 

The output of sensor array or even a single sensor can be 
composed of a high dimensional vector, with each element 
representing a physical variable or a chemical compound. 
However, it is very likely that only some of these variables 
contain pertinent information, so feature subset selection not 
only reduces signal dimension but also excludes irrelevant  
variables from system modelling. More importantly, the 
selected feature subset can provide the most direct and 
pertinent information for system analysis. For example, 
detecting biomarkers from the signals of a biosensor designed 
for disease diagnosis can provide the kernel information for 
pathology research. 
In general, selecting a feature subset is an optimization problem 
which aims to find a subset that can yield an optimal solution 
such as the highest classification accuracy. Because the objective 
function could be represented by non-traditional models like 
neural network models, stochastic optimization methods such 
as genetic algorithms (Goldberg, 1989), differential evolution 
(Storn, Price, 1995), and simulated annealing (Kirkpatrick et al., 
1983) are popularly used in this aspect. 

Genetic algorithm (GA) 
GA is a powerful optimization method that mimics natural 
evolution principles, consisting of three major operators: selection, 
crossover, and mutation (Michalewicz et al. 1992; Hibbert, 1993). 
By employing an objective function constructed by selected 
variables, GA attempts to provide an optimal feature subset. In this 
optimization problem, a binary vector indicating which variables are 
selected into the feature subset is used as chromosome for the 
evolution process in GA and the objective function represented by 
classification or predication accuracy is used as a fitness function to 
evaluate chromosome quality. 
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figure 3. 
amplitude distributions between 
pairs of 10 detected biomarkers that 
distinguish t4 bacteriophage (blank 
box) from Bovine serum albumin 
protein (shaded box).

 

Figure 3 shows 10 biomarkers that were detected by GA to 
differentiate protein and virus from the output signals of a gas 
chromatography differential mobility spectrometry (GC/DMS) 
based sensor (Ayer et al., 2008). Using a PCA and neural network 
integrated classification model, these 10 biomarkers yielded 94% 
classification accuracy. The GA- driven feature subset selection 
approach was also applied for DMS based bacterial identification and 
Bacillus spore detection (Krebs, Mansfield et al., 2006; Shnayderman 
et al., 2005) and MS based electric nose design (Llobet et al., 2007). 
Although GA can theoretically provide a global optimal solution, 
for a high dimensional optimization problem, GA is very likely to 
fall into local optima, which usually indicates a premature solution. 
It is therefore a key issue to define proper cross-over and mutation 
rates, although it can be difficult in some cases. 

Differential evolution (DE) 
DE is a novel parallel optimal searching method proposed in 
the mid-1990s (Storn, Price, 1995). The main concept of DE is 
a scheme to generate population vectors. Basically, DE employs 
three population vectors to generate a new population vector. 
The weighted difference between two selected population vectors 
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is added to the third vector, which is then crossed-over with 
the target vector g to generate a new vector v. If v has a better 
quality than g, it will replace g for the next generation, otherwise, 
v will be discarded and g will survive (Li, Heinemann, 2007). This 
“family” generation process is different from that of GA, where two 
randomly selected members are used to generate a member for the 
next generation. 
Using a probabilistic neural network (PNN) model as the cost 
function, DE was applied for the wavelength selection to develop 
a surface acoustic wave sensor for food quality monitoring (Li, 
Heinemann, 2007). In this study, a comparison between the results 
of DE and GA shows that although both methods significantly 
reduced data dimensions by 50%, DE achieved a better average 
performance than GA, reaching the minimal misclassification rate 
of 0.0175. 

Simulated annealing (SA) 
Simulated annealing (SA) is another global searching approach 
motivated by statistical thermodynamics (Kirkpatrick et al., 1983). 
During an optimization process, SA algorithms replace the current 
solution with a random neighbour solution based on a probability 
p which is a function of current “annealing” temperature (T). This 
replacement can help prevent searching processes from falling into 
local optima. SA has been applied to detect “representative” mass 
spectrometry fragments for an E-nose based food classification 
(Llobet et al., 2007). The key for SA is to establish a proper 
“annealing” temperature (T) decrease function. In some cases, it 
could be challenging to design a proper decreasing process of T and 
also SA could require prohibitively long periods of time to follow 
this process. 

System modelling 

With the data pre-processing and feature extraction steps done, a 
machine learning process is moving to the final step, a real learning 
process called system modelling. In terms of learning strategies, the 
learning processes can be divided into two categories, supervised 
leaning and unsupervised learning. 
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Supervised learning methods 

Assuming the sensor output signals of the analyzed samples are 
X and the corresponding information (e.g., class memberships or 
chemical concentrations) are Y, supervised learning process aims to 
establish a function ƒ:Y = ƒ(X) to describe the relationship between 
X and Y and make a prediction for a new sample. Most supervised 
learning methods can be used for both classification problems like 
vapour identification and quantitative estimation problems like 
vapour concentration prediction, while some can be used only for 
classification problems. 

Principal component regression (PCR) 
As a simple machine learning method, least square (LS) regression 
is the most popular method to create a map from independent 
variables X to dependent variables Y. The major problems for 
ordinary LS methods are that (1) the sample number must be 
equal to or larger than the number of model parameters (i.e., the 
number of independent variables) and (2) possible co-linearity 
in the independent variables could result in the ill-condition of a 
regression matrix and eventually lead to an unreliable solution. 
One feasible way to solve these problems is to create a regression 
model based on principal components, called PCR (Wold et al., 
1987). Thus, the regressors are decorrelated and the number of 
regressors is also significantly reduced. However, the extraction of 
principal components is solely reliant on the independent variables 
(sensor signals), so the direction of maximal variance in PCA is not 
related with the dependent variables, which usually results in the 
modelling effect of PCR being a little poorer than the effect of a 
model to be discussed next. 

Partial least square regression (PLSR) 
PLSR is another modified LSR, extracting uncorrelated latent 
variables from the original data. The difference between PLSR and 
PCR is the extraction of latent variables in PLSR not only employs 
independent variables X but also take into account dependent 
variables Y. 
A general linear model is Y=XB +E, where B is the regression 
coefficients and E is the residual matrix. PLSR generates a 
transforming matrix W to transform X to T (T=XW, called score 
matrix or PLS components). Let Λ=WB, then the PLS regression 
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figure 4. 
a schematic illustration of a two-class 

linear separation.

model turns to be Y=TΛ+E. Thus, the regression of X against 
Y becomes the regression of PLS components T against Y. One 
standard PLS algorithm is nonlinear iterative partial least squares 
(NIPALS). The details of this algorithm are discussed in the literature 
(Hoskuldsson, 1988). 
Both PCR and PLSR were designed for quantitative estimation 
problems and classification problems as well. As an effective 
linear function approximation tool, PLSR has been widely applied 
to E-nose design (Vestergaard et al., 2006; Trihaas et al., 2005; 
Aishima, 2004). 

Linear discrimination analysis (LDA) 
LDA is a linear classifier that expects to find the best separating 
line or plane between two groups of samples. Figure 4 shows 
a schematic LDA based separation of two groups. Assuming a 
sensor output vector is x, a general equation for LDA can be 
expressed as: 

 (3) 

where w is a weight vector and w0 is a constant (threshold value). 
The decision rule for a two-class problem is based on the positivity 
or negativity of the function value of f(x). 
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The key for designing a LDA classifier is to obtain the best separation 
line or plane (i.e., the best w and w0 ) from the training samples. 
Fisher discrimination (Fischer, 1936) is the most canonical strategy 
for finding the best parameters w and w0. Given the between - and 
within-covariance matrices ( SB and SW ) of two sample groups, 
Fisher discrimination is to maximize the ratio of the between-to-
within variability through the following optimization problem. 

 (4)
  

The above classification strategy can be extended to a multiple-class 
separation problem. Stepwise linear discrimination functions are a 
feasible tool for such an extension. LDA has also been extensively 
used in E-nose applications such as wine classification (Buratti et al., 
2004) and green tea grade identification (Yu et al., 2008). 
Bayes classifier 
Bayes classifier is a maximal probability rule based classification 
method, aiming to minimize the “expected risk” caused by 
misclassification (Dutta, Dutta, 2006). Assuming there are N classes 
(1,2,.., N), the posterior probability of class h for sample x is: 

 (5)
  

where, λj is the priori probability of class j and P(x / j) is the 
conditional probability of x given class j. 
The Bayes decision rule is:

 (6)opt opt opt
i i i

i
w y x wα  .    

The priori probability λh can be estimated as the ratio of the 
number of the samples in Class h to the number of all the samples. 
In most cases, the conditional probability P(x / h) can be replaced 
by a continuous probability density function f(x / h) and usually can 
be estimated by two methods, namely the parametric approach 
and non-parametric approach (Dutta, Dutta, 2006). A Bayes 
classifier based on parametric approach can also be called quadratic 
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discrimination (QD) process while non-parametric approaches 
generally apply kernel functions to estimate f(x / h). 
Bayes classifier was successfully applied to classify the bacterial 
infections in a hospital environment (Dutta, Dutta, 2006). In this 
study, using an adaptive kernel function based probability density 
function, the Bayes classifier reached an excellent bacterial 
classification accuracy of 99.8%.

k-nearest neighbours (k-NN) 
k-NN is a relatively straightforward pattern recognition method 
for sensor design (Dodd et al., 2004; Kuske et al., 2005). Assuming 
there are N samples belonging to C classes, in order to classify a 
new sample, k-NN needs to find k nearest neighbours of this new 
sample from the N samples based on distance or similarity. Let the 
k nearest samples be composed of k1 from class 1, k2 from class 2, 
…, and kC from class C. Thus, the decision rule is: 

  (7)arg max :   ( 1,2,..., )jx k j C 
j

 
 

The new sample belongs to the class that has the most neighbours 
of this sample. The key parameter for this method is k. A larger 
value of k could reduce the influence of outlier or noise but could 
generate clouded class boundaries. Usually small k values (3 or 5) 
are preferred  (Berrueta et al., 2007). 
The advantages of k-NN are (1) mathematical simplicity and (2) no 
need for statistical assumptions for sample distribution. However, 
k-NN may not work well when the sample numbers of each class are 
not comparable. In such cases, using weighted distance for clustering 
is a feasible choice. Meanwhile, considering the determination of k 
could be empirical and arbitrary, an adaptive k-NN was recently 
proposed to provide a robust categorization result (Roncaglia et al., 
2004), where the categorization of a new sample is not solely based 
on the number of its neighbours in each class. This adaptive k-NN 
approach presented a good application in detecting air pollutants 
with a sensor array (Roncaglia et al., 2004). 

Back-propagation neural network (BPNN) 
From this subsection on, the discussion of supervised learning 
methods will focus on artificial neural network (ANN) models. Some 
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modifications of linear learning methods such as stepwise functions 
and polynominal regression can be applied for non-linear systems, 
but they do not work for highly nonlinear modelling problems. 
Presenting a good mimic of human brain cognition process, ANN 
has been extensively used for machine learning tasks. A variety of 
ANN models have been developed for sensor design, but this paper 
will focus on three most widely used ANN models, since many of 
others can be considered derivatives of these versions. 
BPNN is one of the most widely used neural network models, with 
extensive applications in function approximation (classification is 
also a type of function approximation problem). Typically BPNN 
is composed of three layers: input, hidden, and output. A sigmoid 
function is a standard nonlinear activation function for each hidden 
and output neuron. Given the error between the stipulated and 
predicted results for the kth sample, Ek, the learning process (i.e., 
the adjusting process for connecting weights) based on the gradient 
descent algorithm can be represented as: 

 (8)
  

where,  and  are the learning rates, v and w are the connecting 
weight vectors between hidden and input layers and between output 
and hidden layers, respectively. This learning process is repeated for 
all the training samples, which is called one iteration. This iteration 
process continues until a convergence criterion is reached. 
BPNN has been used for developing various E-nose systems 
including bacterial infected illness diagnosis and warfare agent 
stimulants classification (Monge et al. 2004; Tchoupo, Guiseppi-
Elie, 2005; Gardner et al., 2000; Alizadeh, Zeynali, 2008). A three-
layer BPNN with sufficient hidden neurons has proven able to 
approximate any classification boundaries (Cybenko, 1989), but a 
possible over¬fitting problem will lead to a failure in the prediction 
of new samples. A constructive approach for building BPNN could 
be either starting with a small structure followed by a gradual 
increase of hidden neurons or using pruning strategies to remove 
extra hidden neurons from a big initial model structure. 
Possible overlong learning time and local optima are two major 
problems for BPNN. Adaptive learning strategies can help BPNN 
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reach a convergence and jump out of local optima, but designing 
such a self-adjusting process is empirical and difficult. 

Radial basis function neural network (RBFNN) 
RBFNN is another widely used neural network model. The basic 
concept of RBFNN is a radial function-based interpolation process, 
seeking a function f (xi )= yi to create a map from sample set 
{xi } to their corresponding outputs {yi}. The typical structure 
of RBFN is also a three-layer forward structure. The hidden layer 
performs a nonlinear transformation to transform the input space 
into a high dimensional transitional space through radial basis 
functions. Gaussian kernel functions are a typical choice of radial 
basis functions.

 (9)

where x is a learning sample vector, cj is the radial basis vector of 
the jth hidden node, σj is the Gaussian width of the jth hidden node. 
With the weights connecting the output node and the hidden nodes, 
the output layer produces a linear summation of all the hidden layer 
outputs. RBFNN can avoid long training time, performing a one-
step learning strategy. 
RBFNN was successfully applied for bacteria classification (Dutta 
et al., 2006), yielding a 98% classification accuracy for six bacteria 
species. RBFNN was also used to develop sensors for odour 
classification (Kim et al., 2007) and fragrance discrimination (Branca 
et al., 2003). 
The major hindrance of building up an RBFNN model is to estimate 
the radial basis vectors and their corresponding Gaussian widths. 
A conventional strategy to determine the radial basis vector is to 
use K-means algorithm to group training samples into a number of 
clusters and then use the cluster centre vectors as the radial basis 
vectors (Hush, Horne, 1993). However the possible local optima 
of K-means algorithm could make the cluster centres unable to 
correctly reflect the data space distribution. In the early 1990’s, 
orthogonal least squares (OLS) was introduced to construct RBFNN, 
using a Gram-Schmidt scheme to select regressors (i.e., radial 
basis vectors) from the training data (Chen et al., 1991). Genetic 
algorithms were also applied to determine which training samples 
could be used as radial basis vectors by minimizing the training error 
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(Whitehead, Choate, 1996), but the searching process may take a 
very long time and can be stuck in local optima. Integrating RBFNN 
with multivariate analysis methods is another effective strategy for 
radial basis vector construction (Walczak, Massart, 1996). In the 
RBF-PLSR approach, all the training samples are used as radial basis 
vectors and then PLSR is applied for the linear regression between 
the hidden and output layers. This method statistically solves the 
construction of radial basis vectors and has been used for mass 
spectrometry calibration and GC/MS based bacterial classification 
(Zhao et al., 2005; Zhao, Morgan, Davis, 2008). 

Support vector machine (SVM) 
The principle for SVM was proposed in the 1960s, but extensive 
studies and applications of SVM began in the 1990s. Principally SVM 
is a statistical method, but in many cases it can be categorized in 
the neural network field, as it has the same structure as RBFNN. 
In contrast to BPNN which requires defining a number of hidden 
neurons before training, the structure of SVM is adaptively 
determined during a learning process. Figure 5 shows a schematic 
linear classification based on support vectors. The black circles 
and triangles are the support vectors of two classes, respectively. 
Basically, SVM is to find a discrimination function as shown in 
equation (10), which is the same as LDA, but the calculation of the 
weight vector is only based on the support vectors. 

 (10) 
 

where xi is a sample vector, w is the weight vector and b is a 
threshold value. 
Assuming support vectors have been determined, the optimal 
separation plane is the one that can maximize the margin between 
two classes, which is proved to be 2 / ||w|| (Kecman, 2001). 
Introducing Lagrange multipliers to this quadratic optimization 
problem can yield, 

 (11)
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figure 5.
support vectors based classification 

system.

 

where αi are Lagrange multipliers. The optimal solution is 
opt opt opt

i i i
i

w y x wα  .

can be easily calculated by any support vector using 
wopt. Support vectors are the samples whose αi ≠ 0. 
The separation process can be extended to multiple-class 
problems. Using Gaussian kernel functions to transform the 
original input space to a linear transitional space, the linear 
separation process of SVM can be easily extended to nonlinear 
systems. Gaussian kernel functions are also a key issue for 
RBFNN, so in some cases SVM for nonlinear systems can also be 
considered as a specific modification of RBFNN where only the 
support vectors (samples) are used for constructing a classifier. 
SVM has obtained successful applications in many fields such as 
E-nose based vapours detection for environmental monitoring 
(Qian et al., 2006) and alcohol identification (Acevedo et al., 2007). 
Using Gaussian kernel function for signal space transformation, 
SVM also presents some inherent problems including the 
determination of a proper Gaussian width for each kernel function. 
In addition to the above three ANN models, probability 
neural network (PNN) is also popularly used for sensor 
signal analysis. Basically, PNN has the same principle as Bayes 
classifier. PNN also used kernel functions for signal space 
transformation, so PNN can be considered another specific 
modification of RBFNN or a neural network implementation 
of Bayes classifier. Kernel functions have been also integrated 
with PLS and PCA to extend the application fields of these two 
classical machine learning tools from linear problems to nonlinear 
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problems. RBF-PLS discussed above is a typical kernel PLS model. 
 
Unsupervised learning methods 

Unsupervised learning is used to examine how the data are organized. 
In contrast to supervised learning processes, unsupervised learning 
processes are only given unlabeled samples. In other words, 
learners only have independent information X but no corresponding 
information Y. Cluster analysis is a major topic for unsupervised 
learning methods. For sensor signal analysis, unsupervised learning 
methods can not only display the distribution and the grouping of 
the data but also provide concentrated information for supervised 
learning processes. 
PCA can be considered as the simplest unsupervised learning 
method, providing a visual data grouping result. Another simple 
but effective unsupervised learning method is K-means algorithm. 
The basic concept of this algorithm is to minimize the sum of the 
distances between all the samples to their cluster centres (i.e., 
total intra-cluster variance) through an iteration process. K-means 
algorithm has been widely used as a tool for system resolution and 
feature extraction. For example, K-means is a practical method 
to determine radial basis vectors for RBFNN and centre vectors 
for PNN. The major drawbacks of K-means are that (1) the global 
convergence of this algorithm largely depends on the initial sample 
order and (2) the algorithm may have a skewed clustering result, 
if the cluster number estimate is incorrect. Therefore in this 
section, we will review a couple of adaptive unsupervised learning 
methods. 
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figure 6. 
self-organizing map of sensor 

responses on a 5×5 rectangular grid 
with clusters indicating the sample 

subgroups labelled using the following 
scheme: sP-d0, sP-d1, sP¬d2 and 
sP-d3 are packaged vegetable kept 
at 10°c for 0–3 days, respectively; 
ec-d0, ec-d1, ec-d2 and ec-d3 are 
packaged vegetable inoculated with 

e. coli on the first day of inoculation 
and after stored at 10°c for 1–3 

days, respectively. (reprinted with the 
permission from elsevier).

Self-organizing map (SOM) 

 

SOM is an unsupervised learning neural network. The most 
significant advantage of SOM is its capability to project a 
high-dimensional space onto a two-dimensional space while 
preserving the topology property of high-dimensional data. In 
terms of structure, SOM is a one-layer neural network. The 
learning process of SOM is based on a competitive algorithm 
which can be separated into three major steps: (1) locating the 
winner neuron whose weight vector is the closest to an input 
training vector, (2) adjusting the winner weight vector towards 
the input vector, and (3) updating the weight vectors of the 
neurons within a neighbouring area of the winner neuron. These 
three steps reflect the mechanisms of the electric signal transfer 
among the brain neurons. 
SOM was recently applied to detect the pathogen contaminated 
packaged fresh vegetables (Siripatrawan, 2008). Figure 6 shows 
a SOM based grouping result for the fresh vegetables with and 
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without E. coli contamination. SOM has also been used for E-nose 
based S. aureus infection identification in hospital environment 
(Dutta et al., 2005).

Adaptive resonance theory based neural network - type 2a (ART-2a) 
As an unsupervised learning method, ART-2a is mainly used 
for cluster analysis. Different from K¬means algorithm where 
the number of clusters needs to predefined, ART-2a shows its 
advantageous ability to add a new cluster without disturbing the 
existing clusters (Carpenter et al., 1991), so it has a potential to 
be used for real-time sensor data analyses. ART-2a has become 
the most widely used method for mass spectrometry (MS) data 
cluster analysis, calibration modelling, and their applications for 
environmental quality studies (Zhao et al., 2005; Zhao, Hopke, 
Prather 2008; Song et al., 1999; Phares et al., 2001). 
Given the initial cluster centre vectors which usually are randomly 
selected from the sample set, the learning process of ART-2a can 
be divided into 4 steps: 

1. Randomly select an input sample vector and scale it to unit 
length. 

2. Find the neuron whose cluster vector has the largest 
resonance to this input vector and call this neuron the 
“winner”. The resonance is estimated by the dot product of 
the input sample vector and the cluster vector. 

3. If the resonance of the winner neuron is larger than a 
predefined vigilance factor (VF), vig, adjust the cluster 
vector of the winner neuron toward the input sample vector. 
Otherwise, create a new cluster for this sample vector. 

4. Repeat the above steps for all the sample vectors, which is 
defined as one cycle. Continue this process, until a stopping 
criterion is reached. 

Clearly, the number of clusters is adaptively determined by ART-2a, 
which makes the cluster analysis more robust and flexible. It can 
be seen that the vigilance factor is a key parameter to control the 
cluster number. An overly large vigilance factor could result in an 
“overly fine” clustering result (the extreme case is one cluster for 
one mass spectral sample) by generating many homogeneous small 
clusters, while an overly small vigilance would result in an “overly 
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figure 7. 
a schematic illustration of the 

difference between the clustering 
principles of dBscan and art-2a.

coarse” result (Zhao, Hopke, Prather, 2008). In ART-2a, a sample 
that does not belong to any currently existing clusters is classified 
into a new cluster. However, during the subsequent training process, 
this new cluster will only expand but never be merged with its 
neighbour clusters, even if this new cluster becomes very similar to 
its neighbour clusters. Therefore, some clusters generated by ART-
2a could have a significant overlap among their sample distribution 
spaces, especially in cases with high vigilance factors. A possible 
remedy for this problem is to regroup the ART-2a clusters with the 
same vigilance factor. 

Density-based clustering of application with noise (DBSCAN) 
DBSCAN presents a very unique clustering process. Different from 
many other cluster analysis methods including ART-2a, DBSCAN 
performs a cluster territory expansion process by examining the 
density and continuity of sample distribution. The entire clustering 
process is controlled by two parameters: neighbour number (k) 
and neighbourhood radius (ε). Briefly, the clustering process starts 
with a randomly selected sample and a cluster is set up for this 
sample. Controlled by the two predefined parameters, k and ε, 
the process will expand the territory of this cluster and examine 
if the cluster can be further expanded. If not, a new cluster will be 
generated. This searching process will continue until all the samples 
are clustered. DBSCAN presents a one-step clustering process 
based on a recursive procedure. The details can be found in the 
literature (Ester et al., 1996; Daszykowski et al., 2001; 2002). 

 DBSCAN   ART-2a
      

Figure 7 shows a schematic illustration of the difference between 
the clustering principles of ART¬2a and DBSCAN. DBSCAN is able 
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to cluster the samples that have a continuous distribution into one 
group, while ART-2a and other methods such as K-means divide 
each group into a couple of small groups based on the sample 
similarity (distance). With this advantage, DBSCAN surpasses many 
clustering methods including ART-2a in clustering the data with 
continuous and irregular distributions. 
A comparison study of the clustering effects of DBSCAN and ART-
2a on MS data (Zhao, Hopke, Prather, 2008; Zhou et al., 2006) 
indicates that a proper vigilance factor can produce a reasonable 
ART-2a clustering result, but an overly fine or ‘‘crashed’’ clustering 
result for an ART-2a with a high vigilance factor can be recovered 
by a post-processing strategy. DBSCAN seems to be more effective 
and robust in the post-processing step than conventional regrouping 
analysis (Zhao, Hopke, Prather, 2008).

Discussion 

After reviewing the methods for each step of a complete machine 
learning process, this section will discuss some potential problems 
and feasible suggestions to help ensure machine learning effects. 
Outlier detection is one of the key issues for data pre-treatment. 
Because (1) outliers may contain the important information and 
(2) it can be difficult to detect and confirm outliers in real-time 
analyses, it is necessary to establish robust models to resist the 
disturbance of possible outliers. Using weighting functions to 
adaptively determine the “contribution” of each sample to the 
modelling effect based on their space or probability distribution 
is a feasible choice for real-time sensor analyses. 
Optimization methods like GA, DE, and SA have been widely used 
for system feature extraction. As an objective driven searching 
process, they can adaptively locate different “representative” 
features or variables for different tasks such as classification 
or chemical concentration estimation. The key issue in the 
searching process is to use a proper function (model) to evaluate 
the fitness and quality of the selected features. It is likely that a 
set of less “representative” features can also yield a high quality 
if there is a “super-powerful” model. Therefore, if the feature 
selection is not only for a high modelling accuracy but also for 
subsequent mechanism studies such as pathological studies, it 
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is suggested to employ a relatively straightforward model as a 
fitness evaluation function to ensure (1) the high fitness is mainly 
due to the selected features and (2) these features may have 
sufficient physical meaning. 
Another important issue for establishing a reliable supervised 
learning strategy and preventing over-fitting is to properly make 
use of the available samples. For a case where there are sufficient 
samples, a feasible way is to divide the data into three subsets: 
training, validating, and testing. The training set is used to obtain 
the model parameters, the validating set is to verify modelling 
effects and finalize the model construction, and the testing set 
is used to formally and finally evaluate the modelling effects. 
For a case with quite limited samples, k-fold cross-validating is 
good choice for model construction and testing. The extreme 
case of k-fold cross-validating process is leave-one-out (LOO) 
strategy, which seems to be the minimum for sample sufficiency 
requirements. Assuming there are m samples, the LOO method 
repeats a training-testing process, in which one sample is left out 
for testing and m-1 samples for training, for m times to cover a 
small sample set. 
Machine learning methods aim to discover the hidden rules 
that control complex systems. Since the physical laws of these 
complex systems are not yet clear, a machine learning process 
based on these statistical and artificial intelligence methods should 
be a continuously self-adjusting process. In other words, for real 
applications, we need to be cautious to the results generated by 
these “grey box” and “black box” models. A validating process 
and a possible model parameter updating process are always 
suggested for a reliable model. 

Conclusion 

This paper has provided a review of the methods that are popularly 
used in the machine learning step for sensor design. With the 
increased complexity of sensor systems and their application fields, 
any of the three steps (data pre-treatment, feature extraction, and 
system modelling) can be a key factor for a successful machine 
learning process. Especially, feature extraction and system 
modelling more and more work together as a system, serving each 
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other, to obtain a good final result. Selecting “good” features can 
yield a nice modelling effect and a proper model can help detect 
“good” features. Integration of linear and nonlinear methods such 
as RBF-PLS and PCA-BPNN is becoming a popular machine learning 
method. Gaussian kernel functions are the fundamental element 
for a group of neural networks including RBFNN, SVM, and PNN. 
A constructive method to determine the parameters of Gaussian 
kernel function will lead to an essential improvement of properties 
of these neural networks. Training time, accuracy, adaptability, 
stability, and plasticity are the major issues for machine learning 
processes. There may be a trade-off among them, so integration 
of the methods with different advantages is a promising direction 
for the machine learning section of sensor design. Developing 
transferable machine learning models is another attractive direction 
for novel sensor design, as it can prevent a complete retraining for 
a new system or environment. Certainly, instrumentation analysis 
improvements are a vital force to develop novel machine learning 
algorithms for sensor design. 
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Sintesi

Analisi dello stato dell’arte nella progettazione e uso dei sensori secondo gli schemi 
del machine learning.
Il concetto di machine learning nasce nell’ambito dell’intelligenza artificiale, ramo 
dell’informatica (intesa qui nell’accezione più ampia di disciplina dedita sia alla 
progettazione che alla realizzazione delle componenti hardware e software) il cui fine 
è la realizzazione di calcolatori capaci di svolgere i ragionamenti tipici della mente 
umana. All’interno dell’intelligenza artificiale, il machine learning - o approfondimento 
automatico - si occupa della realizzazione di sistemi che, partendo dall’osservazione 
di dati, permettono la sintesi di nuove conoscenze.
Nel corso del tempo l’idea sottesa a tale tipologia di sistemi, ovvero i compiti assegnati 
alle due componenti hardware e software, si è naturalmente modificata. Inizialmente, 
infatti, la sintesi era lasciata ad algoritmi dedicati i quali elaboravano la totalità dei 
dati; la componente hardware, pur se differente a seconda dei casi, non svolgeva 
altra attività se non quella di rilevazione delle informazioni (dati). Le due componenti 
hardware e software avevano quindi domini e funzioni disgiunte e complementari: 
la prima dedicata alla sola acquisizione e quantificazione delle grandezze sotto 
studio; la seconda efficace nella determinazione delle acquisizioni utili, e nella sintesi 
e verifica delle nuove descrizioni della realtà. Tuttavia, i progressi tecnologici nel 
tempo hanno portato questa differenza ad essere meno netta, in particolare il ruolo 
dell’hardware si è ampliato portando alla progettazione e realizzazione di sensori 
capaci di un pretrattamento dei dati, diminuendo così il carico della componente 
algoritmica e, di conseguenza, velocizzandone la sintesi. 
Un esempio noto che può illustrare il passaggio da un hardware passivo ad uno 
attivo è dato dai computer e il gioco degli scacchi. È indubbio infatti che un qualsiasi 
elaboratore, una volta corredato del software adatto, possa giocare a scacchi, ma 
sono quelli dedicati - quelli ovvero in cui anche la componentistica è progettata 
appositamente per tale gioco, quali Deep Blue - a sintetizzare le strategie migliori. 
Il lavoro dell’equipe composta da Bhushan, Davis, Santamaria, Simon e Zhao 
illustra l’attuale schematizzazione di un processo costruito tramite le tecniche 
dell’apprendimento automatico, suddividendolo nelle tre fasi fondamentali: pre-
trattamento dei dati, ridimensionamento e selezione, e modellizzazione. Di particolare 
interesse è la descrizione dagli algoritmi maggiormente efficaci per ognuna di 
queste fasi e le interessanti considerazioni per migliorare la componente hardware 
che da queste prendono spunto. Questi possibili perfezionamenti hanno alla base 
l’applicazione dell’idea stessa di machine learning alle unità destinate alla rilevazione 
dei dati: i sensori. Con altre parole, il sensori (più correttamente, i sistemi sensore) 
che prima si dedicavano soltanto all’acquisizione dei dati, vengono ora considerati 
strutture dotate di capacità di apprendimento le quali, analizzando le informazioni 
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da se stesse ricavate, formulano delle regole per la discriminazione dei dati utili, per 
il calcolo della numerosità delle informazioni necessarie da acquisire e, soprattutto, 
possono effettuare test atti a verificare se le regole ricavate siano “buone” e, quindi, 
se continuare ad applicarle o cercarne altre. È nella deduzione e verifica delle regole 
che si manifesta l’apprendimento automatico: il sensore impara dalla sue stesse 
misurazioni ad acquisire un maggior numero di dati utili, da passare successivamente 
agli algoritmi di analisi, e, insieme, verifica l’affidabilità delle proprie deduzioni. 
In questo è evidente la somiglianza con parte della metodologia scientifica umana: 
osservazione, formulazione, verifica. 
Chiaramente, per quanto possano essere precise e a prova di errore le migliorie 
apportate al sistema sensori, questi devono comunque essere soggetti ad un 
controllo che ne verifichi a sua volta il corretto funzionamento evitando quindi una 
loro trasformazione in scatola nera. Ciononostante, considerato l’impiego di queste 
tecnologie nei campi più disparati (dalle diagnosi mediche ai monitoraggi ambientali, 
dal controllo della qualità dei generi alimentari all’analisi dei processi industriali), 
il loro miglioramento non può che avere una ricaduta positiva (e, forse, anche 
inaspettatamente vasta) nella qualità della vita.


